

Edexcel A2 Physics: Further Mechanics – Calculation Practice

Praneel Physics

1. A car accelerates from rest at a rate of 2 m/s^2 for 5 seconds. What is the final velocity of the car? (P)

Working and Answer:

Using $v = u + at$, where $u = 0$, $a = 2 \text{ m/s}^2$, $t = 5 \text{ s}$: $v = 0 + (2)(5) = 10 \text{ m/s}$. Final velocity $v = 10 \text{ m/s}$.

2. A ball is thrown vertically upwards with an initial velocity of 15 m/s. Calculate the maximum height reached by the ball. (Take $g = 9.81 \text{ m/s}^2$) (P)

Working and Answer:

$$\text{Using } v^2 = u^2 + 2as, \text{ where } v = 0, u = 15 \text{ m/s}, a = -9.81 \text{ m/s}^2 : 0 = (15)^2 + 2(-9.81)s, 0 = 225 - 19.62s, 19.62s = 225, s = \frac{225}{19.62} \approx 11.48 \text{ m. Maximum height } s \approx 11.48 \text{ m.}$$

3. A block of mass 3 kg is pulled along a horizontal surface with a force of 12 N. If the frictional force is 4 N, what is the acceleration of the block? (P)

Working and Answer:

$$\text{Net force } F = 12 \text{ N} - 4 \text{ N} = 8 \text{ N. Using } F = ma : 8 = 3a, a = \frac{8}{3} \approx 2.67 \text{ m/s}^2. \text{ Acceleration } a \approx 2.67 \text{ m/s}^2.$$

4. A projectile is launched at an angle of 30° with an initial speed of 20 m/s. Calculate the horizontal range of the projectile. (Take $g = 9.81 \text{ m/s}^2$) (P)

Working and Answer:

Horizontal component of velocity $v_x = 20 \cos(30^\circ) = 20 \times \frac{\sqrt{3}}{2} \approx 17.32 \text{ m/s}$. Vertical component of velocity $v_y = 20 \sin(30^\circ) = 20 \times \frac{1}{2} = 10 \text{ m/s}$. Time of flight $t = \frac{2v_y}{g} = \frac{2 \times 10}{9.81} \approx 2.04 \text{ s}$. Range $R = v_x t \approx 17.32 \times 2.04 \approx 35.34 \text{ m}$. Horizontal range $R \approx 35.34 \text{ m}$.

5. A pendulum of length 2 m swings with small amplitude. Calculate the period of the pendulum. (Use $g = 9.81 \text{ m/s}^2$) (P)

Working and Answer:

Using the formula for the period of a simple pendulum: $T = 2\pi\sqrt{\frac{L}{g}}$, $T = 2\pi\sqrt{\frac{2}{9.81}} \approx 2.83 \text{ s}$. Period $T \approx 2.83 \text{ s}$.

6. A car travels a distance of 150 m in 5 s. What is the average speed of the car? (PP)

Working and Answer:

Average speed $v = \frac{d}{t} = \frac{150 \text{ m}}{5 \text{ s}} = 30 \text{ m/s}$. Average speed $v = 30 \text{ m/s}$.

7. A 5 kg object is dropped from a height of 20 m. Calculate the speed of the object just before it hits the ground. (Take $g = 9.81 \text{ m/s}^2$) (PP)

Working and Answer:

Using $v^2 = u^2 + 2gh$, where $u = 0$, $h = 20 \text{ m}$: $v^2 = 0 + 2(9.81)(20)$, $v^2 = 392.4$, $v = \sqrt{392.4} \approx 19.81 \text{ m/s}$. Speed just before impact $v \approx 19.81 \text{ m/s}$.

8. A 10 kg block is resting on a frictionless surface. A force of 50 N is applied. What is the acceleration of the block? (PP)

Working and Answer:

Using $F = ma$: $50 = 10a$, $a = \frac{50}{10} = 5 \text{ m/s}^2$. Acceleration $a = 5 \text{ m/s}^2$.

9. A cyclist accelerates from rest to a speed of 12 m/s in 4 s. Calculate the distance covered during this time. (PP)

Working and Answer:

$$\text{Using } s = ut + \frac{1}{2}at^2, \text{ where } u = 0, a = \frac{12}{4} = 3 \text{ m/s}^2 : s = 0 \cdot 4 + \frac{1}{2}(3)(4^2) = \frac{1}{2}(3)(16) = 24 \text{ m. Distance covered } s = 24 \text{ m.}$$

10. A stone is thrown horizontally from a height of 45 m. Calculate the time it takes to hit the ground. (Use $g = 9.81 \text{ m/s}^2$) (PP)

Working and Answer:

$$\text{Using } h = \frac{1}{2}gt^2 : 45 = \frac{1}{2}(9.81)t^2, 45 = 4.905t^2, t^2 = \frac{45}{4.905} \approx 9.16, t \approx 3.02 \text{ s. Time to hit the ground } t \approx 3.02 \text{ s.}$$

11. A 2 kg mass is attached to a spring with a spring constant of 300 N/m. Calculate the potential energy stored in the spring when it is compressed by 0.1 m. (PP)

Working and Answer:

$$\text{Using } PE = \frac{1}{2}kx^2 : PE = \frac{1}{2}(300)(0.1^2) = \frac{1}{2}(300)(0.01) = 1.5 \text{ J. Potential energy } PE = 1.5 \text{ J.}$$

12. A 4 kg object is moving in a circular path of radius 2 m with a speed of 6 m/s. Calculate the centripetal force acting on the object. (PPP)

Working and Answer:

$$\text{Using } F_c = \frac{mv^2}{r} : F_c = \frac{4(6^2)}{2} = \frac{4 \cdot 36}{2} = 72 \text{ N. Centripetal force } F_c = 72 \text{ N.}$$

13. A 10 kg object is moving with a velocity of 5 m/s. Calculate its kinetic energy. (PPP)

Working and Answer:

$$\text{Using } KE = \frac{1}{2}mv^2 : KE = \frac{1}{2}(10)(5^2) = \frac{1}{2}(10)(25) = 125 \text{ J. Kinetic energy } KE = 125 \text{ J.}$$

14. A 3 kg object is moving in a straight line and comes to a stop after 4 s due to a constant force. If the initial velocity was 12 m/s, calculate the magnitude of the force acting on the object. (PPP)

Working and Answer:

$$\text{Using } F = ma, \text{ first find acceleration } a : v = u + at \Rightarrow 0 = 12 + a(4), a = -3 \text{ m/s}^2. F = 3(-3) = -9 \text{ N} \Rightarrow \text{Magnitude } |F| = 9 \text{ N.}$$

15. A 5 kg object is attached to a spring and compressed by 0.2 m. If the spring constant is 250 N/m, calculate the force exerted by the spring. (PPP)

Working and Answer:

Using Hooke's Law $F = kx$: $F = 250 \times 0.2 = 50 \text{ N}$. Force exerted by the spring $F = 50 \text{ N}$.

16. A 2 kg mass is moving in a circular path with a radius of 1.5 m at a speed of 4 m/s. Calculate the centripetal acceleration. (PPP)

Working and Answer:

Using $a_c = \frac{v^2}{r}$: $a_c = \frac{4^2}{1.5} = \frac{16}{1.5} \approx 10.67 \text{ m/s}^2$. Centripetal acceleration $a_c \approx 10.67 \text{ m/s}^2$.

17. A 1.5 kg object is moving with a velocity of 10 m/s and collides elastically with a stationary 1.5 kg object. Calculate the final velocities of both objects after the collision. (PPPP)

Working and Answer:

Using conservation of momentum and kinetic energy: $m_1 = m_2 = 1.5 \text{ kg}$, $u_1 = 10 \text{ m/s}$, $u_2 = 0$: $v_1 = \frac{(m_1 - m_2)u_1 + 2m_2u_2}{m_1 + m_2} = \frac{(1.5 - 1.5)(10) + 2(1.5)(0)}{1.5 + 1.5} = 0 \text{ m/s}$. $v_2 = \frac{(m_2 - m_1)u_2 + 2m_1u_1}{m_1 + m_2} = \frac{(1.5 - 1.5)(0) + 2(1.5)(10)}{1.5 + 1.5} = 10 \text{ m/s}$. Final velocities: $v_1 = 0 \text{ m/s}$, $v_2 = 10 \text{ m/s}$.

18. A 3 kg object is moving in a circular path of radius 4 m with a speed of 8 m/s. Calculate the work done by the centripetal force over one complete revolution. (PPPP)

Working and Answer:

Centripetal force does no work as it acts perpendicular to the displacement. Work done $W = 0 \text{ J}$.

19. A 2 kg block slides down a frictionless incline of height 5 m. Calculate the speed of the block at the bottom of the incline. (PPPP)

Working and Answer:

Using conservation of energy: $PE_{top} = KE_{bottom}$: $mgh = \frac{1}{2}mv^2$, $2 \cdot 9.81 \cdot 5 = \frac{1}{2}(2)v^2$, $98.1 = v^2$, $v = \sqrt{98.1} \approx 9.9 \text{ m/s}$. Speed at the bottom $v \approx 9.9 \text{ m/s}$.

20. A 1 kg mass is attached to a spring with a spring constant of 200 N/m and is compressed by 0.3 m. Calculate the maximum speed of the mass when released. (PPPP)

Working and Answer:

$$\text{Using conservation of energy: } PE_{\text{spring}} = KE_{\text{max}} : \frac{1}{2}kx^2 = \frac{1}{2}mv^2, \frac{1}{2}(200)(0.3^2) = \frac{1}{2}(1)v^2, 9 = \frac{1}{2}(1)v^2, v^2 = 18, v = \sqrt{18} \approx 4.24 \text{ m/s. Maximum speed } v \approx 4.24 \text{ m/s.}$$

21. A 5 kg object is moving in a circular path with a radius of 3 m at a speed of 10 m/s. Calculate the work done by the centripetal force over one complete revolution. (PPPP)

Working and Answer:

Centripetal force does no work as it acts perpendicular to the displacement. Work done $W = 0 \text{ J.}$

22. A 4 kg object is moving with a velocity of 6 m/s and collides elastically with a stationary 4 kg object. Calculate the final velocities of both objects after the collision. (PPPPP)

Working and Answer:

Using conservation of momentum and kinetic energy: $m_1 = m_2 = 4 \text{ kg}$, $u_1 = 6 \text{ m/s}$, $u_2 = 0$: $v_1 = \frac{(m_1 - m_2)u_1 + 2m_2u_2}{m_1 + m_2} = \frac{(4 - 4)(6) + 2(4)(0)}{4 + 4} = 0 \text{ m/s}$. $v_2 = \frac{(m_2 - m_1)u_2 + 2m_1u_1}{m_1 + m_2} = \frac{(4 - 4)(0) + 2(4)(6)}{4 + 4} = 6 \text{ m/s}$. Final velocities: $v_1 = 0 \text{ m/s}$, $v_2 = 6 \text{ m/s}$.

23. A 2 kg mass is attached to a spring with a spring constant of 150 N/m and is compressed by 0.4 m. Calculate the maximum speed of the mass when released. (PPPPP)

Working and Answer:

Using conservation of energy: $PE_{spring} = KE_{max}$: $\frac{1}{2}kx^2 = \frac{1}{2}mv^2$, $\frac{1}{2}(150)(0.4^2) = \frac{1}{2}(2)v^2$, $12 = v^2$, $v = \sqrt{12} \approx 3.46$ m/s. Maximum speed $v \approx 3.46$ m/s.

24. A 3 kg object is moving in a circular path of radius 2 m with a speed of 5 m/s. Calculate the work done by the centripetal force over one complete revolution. (PPPPP)

Working and Answer:

Centripetal force does no work as it acts perpendicular to the displacement. Work done $W = 0$